Fatigable ptosis as an initial presentation of adult-onset Leigh syndrome

A 20-year-old man presented with bilateral fatigable ptosis for 1 month. On examination, there was bilateral incomplete ptosis, which deteriorated during upward gaze and improved at rest (figure, A and B). Tests for myasthenia gravis were all negative. Brain MRI showed symmetric hyperintensities at periaqueductal gray matter on T2- and diffusion-weighted images (figure, C). CSF lactic acid was elevated. Mitochondrial genome test demonstrated a homoplasmic T9176C mutation in the MT-APT6A gene, known as pathogenic mutation of Leigh syndrome.1 In our patient, fatigable ptosis may be ascribed to the dysfunction at centrally located synapse between the nuclear complex of the third nerve and supranuclear pathways.2

Eun Hye Oh, MD, Song-Hwa Chae, MD, Jae-Wook Cho, MD, Seung Kug Baik, MD, Seo-Young Choi, MD, Kwang-Dong Choi, MD, Jae-Hwan Choi, MD
From the Departments of Neurology (E.H.O., S.-H.C., J.-W.C., J.-H.C.) and Radiology (S.K.B.), Research Institute for Convergence of Biomedical Science and Technology, Pusan National University School of Medicine, Pusan National University Yangsan Hospital; and Department of Neurology (S.-Y.C., K.-D.C.), Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan, South Korea.

Author contributions: Eun Hye Oh: study concept and design, drafting the manuscript. Song-Hwa Chae, Jae-Wook Cho, Seung Kug Baik, Seo Young Choi, Kwang-Dong Choi: analysis and interpretation of data. Jae-Hwan Choi: study concept and design, analysis and interpretation of data, study supervision.

Study funding: No targeted funding reported.

Disclosure: The authors report no disclosures relevant to the manuscript. Go to Neurology.org for full disclosures.

Correspondence to Dr. J.-H. Choi: rachelbolan@hanmail.net

Fatigable ptosis as an initial presentation of adult-onset Leigh syndrome

Eun Hye Oh, Song-Hwa Chae, Jae-Wook Cho, et al.

Neurology 2017;89;1754
DOI 10.1212/WNL.0000000000004528

This information is current as of October 16, 2017

<table>
<thead>
<tr>
<th>Updated Information & Services</th>
<th>including high resolution figures, can be found at: http://www.neurology.org/content/89/16/1754.full.html</th>
</tr>
</thead>
<tbody>
<tr>
<td>References</td>
<td>This article cites 2 articles, 2 of which you can access for free at: http://www.neurology.org/content/89/16/1754.full.html##ref-list-1</td>
</tr>
<tr>
<td>Subspecialty Collections</td>
<td>This article, along with others on similar topics, appears in the following collection(s): Eyelids http://www.neurology.org/cgi/collection/eyelids Mitochondrial disorders http://www.neurology.org/cgi/collection/mitochondrial_disorders MRI http://www.neurology.org/cgi/collection/mri</td>
</tr>
<tr>
<td>Permissions & Licensing</td>
<td>Information about reproducing this article in parts (figures, tables) or in its entirety can be found online at: http://www.neurology.org/misc/about.xhtml#permissions</td>
</tr>
<tr>
<td>Reprints</td>
<td>Information about ordering reprints can be found online: http://www.neurology.org/misc/addir.xhtml#reprintsus</td>
</tr>
</tbody>
</table>